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Abstract Model predictive control (MPC) without
guaranteed stability is typically employed for trajec-
tory tracking of autonomous trucks (ATs). However, in
certain scenarios, the tracking error may fail to con-
verge. To address this, the optimization control prob-
lem can be designed by incorporating terminal ingre-
dients, i.e., the terminal control gain, terminal con-
straint, and terminal cost function. In this paper, we
propose a nonlinear model predictive control (NMPC)
scheme with terminal ingredients for trajectory track-
ing of ATs in the presence of the coupled longitudinal
and lateral dynamics. The trajectory tracking problem
exhibits asymptotic convergence, and the optimization
control problem (OCP) ensures recursive feasibility.
The complexity of the proposed controller is similar to
that of a standard NMPC without terminal ingredients.
Additionally, we introduce an efficient Newton-type
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method with a look-up table (NTLT) to solve the OCP.
Co-simulations in Matlab/Simulink and TruckSim val-
idate the effectiveness of the proposed NMPC scheme
and the NTLT across various scenarios.
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Nonlinear model predictive control · Recursive
feasibility · Asymptotic convergence · Newton-type
method

1 Introduction

Autonomous vehicles (AVs) have seen significant
advancements in the transportation industry, offer-
ing significant benefits such as enhanced road safety,
improved transportation efficiency, and reduced fuel
consumption [1]. As an important part of the intelli-
gent transportation system, autonomous trucks (ATs)
still face considerable challenges due to their largemass
and complex nonlinear dynamics.

Trajectory tracking control is a key technology in
autonomous driving systems [2]. In [3], a sliding mode
controller is proposed for parking control, adopting
a kinematic model. In [4–6], proportional-integral-
derivative (PID) controllers are designed for the longi-
tudinal control of vehicle platooning. However, kine-
matic model-based controllers are typically applied for
AVs at low velocities or with low mass. Considering
the nonlinear vehicle dynamics, some controllers have
been extensively developed for trajectory tracking of
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AVs. In [7–10], sliding mode controllers are proposed
to guarantee that tracking errors asymptotically con-
verge to zero. In [11,12], backstepping controllers are
designed for the steering control of AVs, considering
the lateral vehicle dynamics. In [13], a coupled longitu-
dinal and lateral dynamic inverse model is established
for trajectory tracking. However, the above studies do
not handle the constraints on states and inputs of vehi-
cle systems, which may lead to driving instability.

Model predictive control (MPC) has been widely
developed for trajectory tracking in AVs, offering sig-
nificant advantages in effectively managing constraints
and nonlinear vehicle dynamics. A comprehensive
review of MPC-based controllers for AVs is provided
in [14]. In [15], an adaptive reduced-horizon MPC is
proposed to reduce computational time during trajec-
tory tracking. To ensure the stability of the closed-loop
system, i.e., to guarantee that the tracking errors asymp-
totically converge to zero, a tube-based MPC is intro-
duced in [16], employing a kinematic bicycle model as
the prediction model. In [17], a MPC with PID feed-
back is proposed to improve the tracking accuracy and
steering smoothness compared to that of the conven-
tional MPC. Several representative studies based on
vehicle dynamicsmodels are summarized in Table 1. In
[18–23], nonlinearmodel predictive control (NMPC) is
designed considering the nonlinear vehicle dynamics,
which is essential for enhancing the accuracy of predic-
tive values.However, in certain scenarios, the trajectory
tracking control objective may not be achieved due to
the inability to guarantee the stability of the vehicle
control system. To account for system uncertainties, a
tube-based MPC is developed in [24–26], where a lin-
ear parameter-varying (LPV) vehicle dynamics model
is utilized as the prediction model. In [27], a linear
MPC approach based on Koopman operator theory is
proposed for truck platooning, ensuring the stability
and recursive feasibility by incorporating terminal con-
straints. However, linearized models still face inherent
uncertainties. Consequently, Lyapunov-based NMPC
has been proposed to ensure the stability of autonomous
underwater vehicle control systems [28–30]. However,
this approach primarily considers input constraints. In
[31], an NMPC with a sufficiently long horizon is pro-
posed for trajectory tracking in ATs. However, deter-
mining the appropriate prediction horizon to guarantee
closed-loop stability remains a challenge. In addition,
a longer prediction horizon leads to increased compu-
tation time [32].

Furthermore, real-time implementation of NMPC
should be considered in ATs. Significant studies have
been proposed to reduce the computational burden of
NMPC. Some studies focus on simplifying models
(e.g., Jacobian linearization model or Koopman oper-
ator model [27]), while others exploit banded struc-
tures of the optimization problem, such as the multiple
shooting method [33], parallel computing approaches
[34], and so on. In particular, to reduce the compu-
tational burden by simplifying models, look-up table-
based modeling methods have been proposed. Gener-
ally, look-up tables are generated by the block diagram
of systems. In [35], a MPC scheme is designed for
Hammerstein systems, where look-up tables are gener-
ated to represent the static block. A two-layer control
strategy is proposed in [36], where a look-up table is
used in the upper layer to determine steady states, while
an unconstrained MPC is employed to track the steady
states in the lower layer. In [37], an NMPC scheme is
proposed for four-wheel steering vehicles, where look-
up tables of tires are designed to reduce the compu-
tational burden under heuristic algorithms. Moreover,
Newton-type (NT) methods have garnered significant
attention,which can be further categorized into sequen-
tial quadratic programming and interior-point meth-
ods depending on how to handle constraints. Under
the framework of NT method, by simplifying the Jaco-
bian matrix, either Riccati NT recursion or parallel NT
methods have been proposed [38].

Motivated by the analysis above, this paper proposes
an NMPC scheme for reference trajectory tracking of
ATs. Furthermore, an improved Newton-type method
with a look-up table (NTLT) for solving the optimiza-
tion problem is presented. The key contributions of this
paper are as follows:

1. Considering the coupled longitudinal and lateral
dynamics of trucks, an NMPC with terminal ingre-
dients is formulated to guarantee recursive feasibil-
ity and asymptotic convergence. Simulation results
show that an NMPC without terminal ingredients
cannot guarantee asymptotic convergence to the ref-
erence trajectory. Furthermore, the complexity of
the proposed NMPC is similar to that of nominal
NMPC without terminal ingredients.

2. To ensure the real-time implementation of the pro-
posed NMPC, the NTLT algorithm with a look-up
table for tires is proposed to reduce the computa-
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Table 1 Literature on trajectory tracking for autonomous vehicles based on MPC

Linear dynamic Nonlinear dynamic Statibility State constraint Input constraint

[18] � �
[19–23] � � �
[24–26] � � � �
[27] � � � �
[28–30] � � �
[31] � � � �

tional burden caused by the nonlinear truck dynam-
ics.

The remainder of this paper is structured as follows:
Sect. 2 presents the truck dynamics. Section 3 describes
the control strategy. Section 4 introduces the NTLT.
Section 5 evaluates the control strategy. Finally, con-
clusions are drawn in Sect. 6.

1.1 Basic notations

Let R denote the set of real numbers. The symbol ‖x‖
represents the Euclidean norm, and ‖x‖Q = √

xT Qx
for any vector x ∈ R

n , where Q ∈ R
n×n is positive def-

inite. For amatrixM , the notationM � 0 indicates that
M is positive semi-definite. For a variable a ∈ R

1, amin

and amax represent its minimum and maximum values,
respectively. The term i |k indicates the predicted value
at the future time instant k + i starting from the cur-
rent time instant k. The symbol ∗ signifies the trans-
pose of a matrix block located symmetrically within
the matrix, 0 represents a zero matrix of appropriate
dimensions, I represents a unit matrix of appropriate
dimensions, �·� represents the floor function, i.e., the
argument is rounded down to the closest integer, and
diag (e1, . . . , en) is a diagonal matrix with diagonal
elements e1 to en . Given sets E ∈ R

n and S ∈ R
n ,

E ⊕ S = {e + s |e ∈ E, s ∈ S } is the Minkowski sum,
E 	 S = {e |e + s ∈ E,∀s ∈ S } is the Pontryagin dif-
ference, and E ◦ S = {e × s |e ∈ E, s ∈ S }.

2 Truck dynamics

As shown in Fig. 1, a light-duty bicycle-truck with four
tires on the rear driving axle is presented, where vx is
the longitudinal velocity, vy is the lateral velocity, γ is

Fig. 1 Truck with 4x2 axle configuration

the yaw rate, Fxr is the longitudinal force of the rear
tire, Fy f is the lateral force of the front tire, Fyr is the
lateral force of the rear tire, m is the truck mass, Iz is
the yaw moment of inertia, l f and lr are the distances
from the center of gravity to the front and rear axles,
respectively.

Then, a 3-DOF bicycle model of ATs including the
longitudinal, lateral, and yaw motions is presented as
[39]
⎧
⎪⎨

⎪⎩

v̇x = vyγ + Fxr
m ,

v̇y = −vxγ + 1
m

(
Fy f + Fyr

)
,

γ̇ = 1
Iz

(
l f Fy f − lr Fyr

)
.

(1)

The Magic Formula tire model of the rear axle is
[40]

Fy f = ft
(
α f
)

= D f sin
[
C f arctan

{
B f α f − E f

(
B f α f

− arctan
(
B f α f

))}]
, (2)

where α f is the slip angle of the front tire, and B f , C f ,
D f , and E f are constants.

In Fig. 2, Fy f min = ft
(
α f min

)
and Fy f max =

ft
(
α f max

)
represent the maximum and minimum val-

ues of the lateral force of the front tire, respectively.
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Fig. 2 Magic Formula tire model

Denote the state vector x = [
vx , vy, γ

]T and the

input vector u = [
Fxr , α f , Fyr

]T . Note that the control
inputs can be converted to steering wheel angles and
rear wheel torques [13]. For the sake of simplicity, the
process of conversion is omitted.

Then, by the Euler method, the truck model in (1)
can be discretized with a sampling time ts as

x (k + 1) = f (x (k) , u (k)) , (3)

where k = �t/ts� is the time instant.
Furthermore, the state x and control input u should

satisfy the following constraints

x ∈ X :=
⎧
⎨

⎩
x ∈ R

3

∣∣∣∣∣∣

vxmin ≤ vx ≤ vxmax ,

vymin ≤ vy ≤ vymax ,

γmin ≤ γ ≤ γmax.

⎫
⎬

⎭
, (4)

and

u ∈ U :=
⎧
⎨

⎩
u ∈ R

3

∣∣∣∣∣∣

Fxrmin ≤ Fxr ≤ Fxrmax ,

α f min ≤ α f ≤ α f max ,

Fyrmin ≤ Fyr ≤ Fyrmax .

⎫
⎬

⎭
. (5)

By (2) and (5), the constraint of the lateral force of
the front tire is defined as

Fy f ∈ Fy f :=
{
Fy f ∈ R

1|Fy f min ≤ Fy f ≤ Fy f max

}
.

(6)

Note that ft
(
α f
)
is bijective for x ∈ X , i.e., there

always exists α f ∈ U if Fy f ∈ Fy f .

Remark 1 The truck considered in this paper and pas-
senger vehicles have similar dynamics. However, in
general, trucks have a larger mass and a higher center
of gravity compared to passenger vehicles. As a result,
trucks may suffer from problems of handling stability
in high-speed driving scenarios.

Fig. 3 The control system of ATs

Fig. 4 Reference trajectory

3 Control strategy design

The control objective of ATs is to track a predefined
reference trajectory.As shown in Fig. 3, the control sys-
tem includes two modules: (1) The reference trajectory
module generates desired states, i.e., the desired lon-
gitudinal velocity vdx , lateral velocity vdy , and yaw rate
γ d ; (2) The NMPC is to track the desired states, where
the control inputs are the sideslip angle of the front tire,
longitudinal force of the rear tire Fxr , and lateral force
of the rear tire Fyr .

3.1 Reference trajectory

Considering traffic efficiency, handling stability, and
passenger comfort, reference trajectory planners have
been proposed for ATs in [13]. As shown in Fig. 4, the
reference trajectory can be expressed as

Yd = froad
(
Xd
)

, (7)

where Xd and Yd are the longitudinal and lateral posi-
tions in the global coordinate system, respectively.Note
that the function froad : R1 → R

1 is continuously dif-
ferentiable.

To improve the handling stability of ATs, the desired
lateral velocity vdy is required to be close to zero, that
is, vdy = 0 [37]. Then, as shown in Fig. 4, according to
the kinematic model of trucks, the desired longitudinal
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velocity vdx and the desired yaw rate γ d of ATs can be
derived by [13]
⎧
⎨

⎩

Ẋd = vdx cos
(
� d

)

Ẏd = vdx sin
(
� d

)

ϕ̇d = γ d
, (8)

where � d = arctan
(
dY d/dXd

)
.

The desired states can be defined as

xd = p (t) , (9)

where p : R
1 → R

3 is a continuous function with

respect to time t and xd = [
vdx , v

d
y , γ

d ]T ∈ R
3.

Furthermore, suppose that the desired states (9) are
constrained as

xd ∈ P :=
{
xd ∈ R

3
∣∣∣xdmin ≤ xd ≤ xdmax

}
. (10)

The desired states xd are constrained within the set
(4), that is,

P ⊆ X . (11)

Thus, there exists the state x ∈ X such that x = xd

for any point xd on the reference trajectory.
Define thedifferencebetween adjacent time instances

of the reference trajectory as �xd , that is,

�xd (k) = xd (k) − xd (k + 1) . (12)

Suppose that �xd is constrained

�xd ∈ �P :=
{
�xd ∈ R

3
∣∣∣�xdmin ≤ �xd ≤ �xdmax

}
.

(13)

3.2 Nonlinear model predictive control

In this section, the tracking problem for the desired
states is reformulated into a regulation problem. Sub-
sequently, the OCP with terminal ingredients is formu-
lated.

3.2.1 Desired states tracking problem

Given the desired states xd in (9), the goal of the trajec-
tory tracking problem is to find an admissible control
input u such that [41]

lim
k→∞ ‖xe (k)‖ = 0, (14)

where

xe (k) =
⎡

⎣
vxe (k)
vye (k)
γe (k)

⎤

⎦ =
⎡

⎣
vx (k) − vdx (k)
vy (k) − vdy (k)
γ (k) − γ d (k)

⎤

⎦ . (15)

The dynamics of the error system (15) can be
described as

xe (k + 1) = A (γ (k)) xe (k) + Bue (k) , (16)

where B = diag (ts, ts, ts), and

A (γ (k)) =
⎡

⎣
1 tsγ (k) 0

−tsγ (k) 1 0
0 0 1

⎤

⎦ . (17)

Note that, in (16), A (γ (k)) is a parameter-varying
matrix, and ue is an implicit function of u, xd , and�xd ,
that is,

ue (k) = [
ue1 (k) ue2 (k) ue3 (k)

]T
, (18)

where
⎧
⎪⎪⎨

⎪⎪⎩

ue1 (k) = Fxr (k)
m + �vdx (k)

ts
+ γ (k) vdy (k) ,

ue2 (k) = Fy f (k)+Fyr (k)
m + �vdy (k)

ts
− γ (k) vdx (k) ,

ue3 (k) = l f Fy f (k)−lr Fyr (k)
Iz

+ �γ d (k)
ts

.

(19)

By (4) and (10), the constraint set of the error state
xe ∈ Xe is defined as

Xe : =
{
xe∈R3

∣∣∣xmin − xdmax ≤ xe ≤ xmax − xdmin

}
,

(20)

where 0 ∈ Xe by (11).
To establish the constraint set of the control input

ue in (19), by (5), (9), and (13), denote the constraints
as Fxr ∈ Fxr , Fyr ∈ Fyr , �vdx ∈ �x , �vdy ∈ �y ,
�γ d ∈ �γ , γ ∈ �, vdx ∈ ϒx , and vdy ∈ ϒy , respec-
tively. Therefore, by (19), the constraint of ue is estab-
lished as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ue1 ∈
{
Fxr
m ⊕ �x

ts
⊕ � ◦ ϒy

}
,

ue2 ∈
{
Fy f ⊕Fyr

m ⊕ �y
ts

	 � ◦ ϒx

}
,

ue3 ∈
{
l fFy f 	lrFyr

m ⊕ �γ

ts

}
.

(21)

Then, the constraint set of ue can be expressed as

Ue :=
⎧
⎨

⎩
ue ∈ R

3

∣∣∣∣∣∣

ue1min ≤ ue1 ≤ ue1max ,

ue2min ≤ ue2 ≤ ue2max ,

ue3min ≤ ue3 ≤ ue3max

⎫
⎬

⎭
. (22)

Note that the constraints of the terms Fxr , Fy f ,
Fyr , �vdx , and γ in (21) are symmetric. Therefore,
the constraint sets (20) and (22) are compact, and
(0, 0) ∈ Xe × Ue, indicating that (0, 0) is the equi-
librium point of the error system (16). Furthermore, it
always holds that there exist control inputs u ∈ U and
states x ∈ X for any ue ∈ Ue and xe ∈ Xe if xd ∈ P
and�xd ∈ �P . Then, the problem for tracking desired
states is reformulated as a regulation problem.

123



W. Li et al.

Remark 2 Note that the constraint sets of the state xe
(20) and the control input ue (22) are used solely for
calculating the terminal penalty matrix and terminal
constraints.

3.2.2 Optimization control problem

The stage cost function is defined as

l
(
xe,i |k , ue,i |k

) = ∥∥xe,i |k
∥∥
Q + ∥∥ue,i |k

∥∥
R,

where both Q ∈ R
3×3 and R ∈ R

3×3 are positive
definite weighting matrices.

The OCP of tracking the desired states is formulated
as follows:
Problem 1.

minimize
U∗(k)

J (x (k)) (23a)

subject to

x0|k = x (k), (23b)

xi+1|k = f
(
xi |k , ui |k

)
, (23c)

xe,k+i |k = xk+i |k − xdk+i |k , (23d)

xi |k ∈ X , (23e)

ui |k ∈ U , (23f)

xN |k − xdN |k ∈ X f , (23g)

where

J (x (k)) =
N−1∑

i=0

l
(
xe,i |k , ue,i |k

)+ F
(
xe,N |k

)
(24)

is the cost function and N is the prediction horizon.
The term X f is the terminal set, and F

(
xe,N |k

)
is the

terminal penalty function.
At the time instant k, the optimal solution of Problem

1 is

U∗ (k) =
[
u∗
0|k , . . . , u∗

N−1|k
]T

, (25)

where the first term u∗
0|k represents the current input of

ATs. At the subsequent time instant k + 1, Problem 1
is repeatly solved using the latest state measurements.

Remark 3 Note that the function l (·, ·) : Xe ×
Ue → R

1 is continuous. It satisfies l (0, 0) = 0 and
l (xe, ue) > 0 for all (xe, ue) ∈ Xe × Ue\ {0, 0}.

Remark 4 For the trajectory tracking problem of AVs
based on the NMPC scheme, the cost function, exclud-
ing terminal terms, is typically defined as

J̃ (x (k)) =
N−1∑

i=0

∥∥∥xi |k − xdi |k
∥∥∥
Q

+ ∥∥ui |k
∥∥
R, (26)

which may not guarantee asymptotic convergence of
the trajectory tracking problem under certain operating
conditions [18–23].

We propose a new cost function (24) based on the
error system terms (16), and demonstrate that the sta-
bility of the trajectory tracking closed-loop system can
be ensured with these modifications.

3.2.3 Terminal ingredients

A polytopic linear differential inclusion (PLDI) appro-
ach is employed to establish suitable terminal ingre-
dients for Problem 1. For the error system (16), there
exists a PLDI 	 such that, for all xe ∈ Ue and ue ∈ Ue,

A (γ (k)) xe + Bue ∈ 	

[
xe
ue

]
, (27)

where

	 := Co
{[
A (γmin) , B

]
,
[
A (γmax) , B

]}
. (28)

The constraint set of states and inputs of the error
system (16) is redefined within a polytope framework,
i.e.,


 =
{[

xe
ue

]
∈ R

6
∣∣∣∣ c j xe + d j ue ≤ 1, j = 1, . . . , p

}
,

(29)

where c j ∈ R
3 and d j ∈ R

3 are two constant vectors.
The terminal ingredients can be derived by solving

the following optimization problem [41].
Problem 2.

maximize
�≥0,Z

(det (�))1/3 (30a)

subject to

⎡

⎢⎢
⎣

� ∗ ∗ ∗
A (γi )� + BZ � ∗ ∗

Q1/2� 0 I ∗
R1/2Z 0 0 I

⎤

⎥⎥
⎦ � 0, i = {min,max}

(30b)
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[
� ∗

c j� + d jZ 1

]
� 0, j ∈ {1, . . . , p} (30c)

Thus, the terminal control law is κ (xe) = Z�−1xe,
the terminal penalty matrix is P = �−1, the terminal
penalty function is

F
(
xe,N |k

) =
∥∥∥xN |k − xdN |k

∥∥∥
2

P
, (31)

and the terminal set is:

X f =
{
xe ∈ R

3
∣∣∣xTe �−1xe ≤ 1

}
. (32)

Remark 5 Thepair of systemmatrix of (16) (A (γ ) , B)

does not depend on the parameters of the desired states.
Consequently, the terminal penaltymatrix and terminal
set remain constant.

Remark 6 The error system (16) is presented to trans-
form the trajectory tracking problem into a regulation
problem. Consequently, the terminal ingredients ensur-
ing both recursive feasibility and asymptotic conver-
gence can be calculated using the error system. Fur-
thermore, the control inputs u can be obtained if the
nonlinear truck dynamics model is employed as the
prediction model in the optimization problem.

3.2.4 Feasibility and asymptotic convergence

According to the well-developed MPC schemes, the
terminal control law κ (xe) and the terminal set X f

satisfy the following conditions:

A1: X f ∈ Xe;
A2: κ (0) = 0, and κ (xe) ∈ Ue for all xe ∈ Xe;
A3: F (0) = 0, and for all xe ∈ X f , F (xe) satisfies

F (xe (k+1))−F (xe (k)) ≤ −l (xe (k) , ue (k)) .

(33)

Lemma 1 (Th. 1 [41]) Suppose that Problem 1 has a
feasible solution at the time instant k. Then, 1): The
Problem 1 remains feasible at the time intant k+1; 2):
The system state x (k) asymptotically tracks the desired
states xd , i.e., limk→∞ ‖xe (k)‖ = 0.

Remark 7 Without considering differences in axle
configuration or varying payload conditions, the pro-
posed NMPC scheme is applicable to vehicles with
identical vehicle dynamics (1) and tire models (2).

4 NTLT method

To reduce the computational burden of solving the opti-
mization problem, the NTLT method is proposed.

4.1 Newton’s type method

The inequality constraints (23e), (23f), and (23g) can
be reformulated as [34]

fb
(
xi |k , ui−1|k

) ≤ 0, b = 1, . . . , ϑ, (34)

where ϑ is the number of inequality costraints.
In the framework of Newton’s method, inequality

constraints are typically transformed into a barrier cost
function or a nonlinear algebraic equality constraint.
Then, define the barrier function for (34) as

φ
(
xi |k , ui−1|k

) =
ϑ∑

b=1

ξb log
(− fb

(
xi |k , ui−1|k

))
,

(35)

where ξb < 0, b ∈ {1, 2, . . . , ϑ}, are constants.
At the predicted time instants i = 1, . . . , N −1, the

cost function can be expressed as

Li |k
(
ui−1|k , xi |k

) = ∥∥xi |k − ri |k
∥∥
Q + ∥∥(ue,i−1|k

)∥∥
R

+φ
(
xi |k , ui−1|k

)
. (36)

The cost function at the predicted time instant i = N
can be expressed as

LN |k
(
uN−1|k , xN |k

) =
∥∥∥xN |k − xdN |k

∥∥∥
P

+∥∥(ue,N−1|k
)∥∥

R

+φ
(
xN |k

)
. (37)

Thus, Problem 1 can be transformed into an opti-
mization problem with only equality constraints as fol-
lows [34]:

Problem 3.

minimize
u∗(k)

∥∥∥x0|k − xd0|k
∥∥∥
Q

+
N∑

i=1

Li |k
(
ui−1|k , xi |k

)

(38a)

subject to

x0|k = x (k) , (38b)

xi |k − f
(
xi−1|k , ui−1|k

) = 0. (38c)
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Define the sequences
{
λi |k ∈ R

nx
}N
i=1 as the

Lagrangemultipliers for the difference equations (38c).
Define the vector of unknown variables as Vi |k :=
[
λT
i |k , uTi−1|k , xTi |k

]T ∈ R
9. The Hamiltonian function

H of Problem 3 can be defined as

H
(Vi |k

) =
N∑

i=1

{Li |k
(
xi |k , ui−1|k

)

+ λi |k
[
xi |k − f

(
xi−1|k , ui−1|k

)]}
(39)

where Hui−1|k = ∂H/∂ui−1|k and Hxi |k = ∂H/∂xi |k .
The Karush-Kuhn-Tucker (KKT) conditions can be

expressed as the following set of nonlinear algebraic
equations

x∗
i |k − f

(
x∗
i−1|k , u∗

i−1|k
)

= 0, (40a)

HT
ui−1|k

(
λ∗
i |k , u∗

i−1|k , x∗
i |k
)

= 0, (40b)

HT
xi |k

(
λ∗
i+1|k , λ∗

i |k , u∗
i−1|k , x∗

i |k
)

= 0, (40c)

where i ∈ {1, · · · N }, x∗
0|k = x (k), and λ∗

N+1|k = 0.

Note that
{
u∗
i−1|k ∈ R

3
}N

i=1
,
{
x∗
i |k ∈ R

3
}N

i=1
, and

{
λ∗
i |k ∈ R

3
}N

i=1
represent the optimal sequences of the

corresponding parameters.
The NT method is employed to solve the nonlinear

algebraic equations (40). Then, (40) can be rewritten
as

ϕi |k
(
xi−1|k ,Vi |k , λi+1|k

)=0,

where the subscript i ∈ {1, . . . , N }, and Vi |k =
[
xTi |k , uTi−1|k , λT

i |k
]T

.

Furthermore, denoteϕ :=
[
ϕT
1|k , ϕT

2|k , · · · , ϕT
N |k

]T
,

and V :=
[
VT
1|k ,VT

2|k , · · · ,VT
N |k

]T
. Starting from an

initial guess V(0), the iteration of the full-step NT
method is defined as

V(σ+1) = V(σ ) − �
(
V(σ )

)−1
ϕ
(
V(σ )

)
, (41)

where the superscript (σ ) denotes the iteration number,
and �(V) := ϕ′ (V) represents the Jacobian matrix of
ϕ with respect to V , that is,

�(V) =

⎡

⎢⎢⎢⎢
⎣

�1|k BR
1 0 0

BL
2 �2|k

. . . 0

0
. . .

. . . BR
N−1

0 0 BL
N �N |k

⎤

⎥⎥⎥⎥
⎦

, (42)

Fig. 5 Partitioning of the tire model

where �i |k = ∂ϕi
∂Vi |k ,

BR
j = ∂ϕ j

∂V j+1|k
=
[

0 0
−�

(
x j−1|k

)
0

]
, (43)

BL
j = ∂ϕ j

∂V j−1|k
=
[
0 −�

(
x j−1|k

)

0 0

]
, (44)

and

�
(
xi |k

) =
⎡

⎣
1 tsγi |k tsvy,i |k

−tsγi |k 1 −tsvx,i |k
0 0 1

⎤

⎦ . (45)

Algorithm 1 The σ th iteration of the NT method

Input: V(σ ), x (σ )
0|k = x0, λ

(σ)
N+1|k = 0

Output V(σ+1)

for i = 1 to N do in parallel

ϕi |k
(
x (σ )
i−1|k ,V(σ )

i |k , λ
(σ)
i+1

)
← V(σ ).

�i |k
(
V(σ )
i |k
)

← ∂ϕi |k
∂Vi |k

∣∣∣(
V(σ )
i |k

).

end for
ϕ
(
V (σ )

) ← ϕi |k
(
x (σ )
i−1|k , V (σ )

i |k , λ
(σ)
i+1|k

)
.

�
(
V (σ )

) ← �i |k
(
V (σ )
i |k

)
.

V(σ+1) = V(σ ) − �
(V(σ )

)
ϕ
(V(σ )

)
.

The σ -th iteration of the NT method is outlined
in Algorithm 1 [34]. The iteration process of the NT
method for solving the nonlinear algebraic equations
(40) is computationally expensive when evaluating
ϕ
(V(σ )

)
and �

(V(σ )
)
. Particularly, for the nonlinear

tire model (2), the tire force ft
(
α f
)
, its first-order

derivative ∂ f t/∂α f , and its second-order derivative
∂2 f t/∂α f

2 are computationally expensive due to the
complex composite function.
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Thus, to reduce the computational burden, an NTLT
is proposed, where the values of the tire force ft

(
α f
)
,

its first-order derivative ∂ f t/∂α f , and its second-order
derivative ∂2 f t/∂α f

2 are stored in a look-up table
offline and searched online.

Algorithm 2 The σ th iteration of the NTLT.

Input: V(σ ), x (σ )
0|k = x0, λ

(σ)
N+1|k = 0

Output V(σ+1)

Step 1: Search the index h of α (k) by the following hash
function [35]:

h =
⌊(

α f (k) − α f min
)× s

α f max − α f min

⌋
.

Step 2:
for i = 1 to N do do in parallel

ft
(
α̂h
)
, d ft/dα̂h , d2 ft/dα̂2

h ← u(σ )
i |k

ϕ̄i

(
x (σ )
i−1|k ,V(σ )

i |k , λ
(σ)
i+1|k

)
← V(σ ),

�̄i

(
V(σ )
i

)
← ∂ϕi

∂Vi

∣∣∣(
V(σ )
i

),

where ft
(
α f,i |k

) = ft
(
α̂h
)
, d ft/dα f,i |k = d ft/dα̂h , and

d2 ft/dα f,i |k = d2 ft/dα̂2
h .

end for
Step 3:

ϕ̄
(
V (σ )

) ← ϕ̄i |k
(
x (σ )
i−1|k , V (σ )

i |k , λ
(σ)
i+1|k

)
.

�̄
(
V (σ )

) ← �̄i

(
V (σ )
i |k

)
.

V(σ+1) = V(σ ) − �̄
(V(σ )

)
ϕ̄
(V(σ )

)
.

Asshown inFig. 5, divide the interval
[
α f min, α f max

]

into s equal segments, i.e.,

αh = [
α f min + hδ, α f min + (h + 1) δ

]
, (46)

where h = 0, . . . , s − 1, and δ = (
α f max − α f min

)
/s

represents the grid step size.
In each segment αh , an arbitrary point α̂h ∈ αh is

selected offline. Then, the values of ft
(
α̂h
)
, d ft/dα̂h ,

and d2 ft/dα̂2
h are computed and stored in a hash table

offline.
Then, the iteration process of the NTLT is presented

in Algorithm 2, where the σ -th iteration is

V(σ+1) = V(σ ) − �̄
(
V(σ )

)−1
ϕ̄
(
V(σ )

)
. (47)

Note that, in �̄
(V(σ )

)
and ϕ̄

(V(σ )
)
, the tire-related

terms are determined according to Step 1.

Remark 8 Note that the proposed NTLT method is
also applicable to inverse or quadratic barrier func-
tions, as they have the same mechanism of handling

Table 2 Parameters of the truck

Parameters Values Parameters Values

m (kg) 16695 Iz (kg m2) 130421.8

l f (m) 3.5 lr (m) 1.5

B f 4.579 C f 1.5237

D f 43226 E f −3.6477

constraints as the logarithmic function [18,34]. And a
poor initial guess can hinder convergence. Therefore,
a warm-start strategy is employed.

Remark 9 Note that both feasibility and convergence
of the proposed NMPC scheme are maintained due
to the inherent robustness of the NMPC, while small
uncertainties occur, such as model-plant mismatches
caused by the vehicle load and the introduction of the
look-up table, and external disturbances [42]. There-
fore, the proposed NMPC is effective if the coefficients
of the tire model vary within a small range.

5 Control strategy evaluation

To validate the proposedNMPC scheme andNTLT, co-
simulations integratingMATLAB/Simulink andTruck-
Sim are conducted. Simulations are performed on a
desktop computer equipped with a 2.90 GHz Intel(R)
Core(TM) i7–10700 processor.

5.1 Truck parameters

Truck parameters are presented in Table 2. The con-
straint sets of states and control inputs are, respectively,

X :=
⎧
⎨

⎩
x ∈ R

3

∣∣∣∣∣∣

10m/s < vx ≤ 30m/s,
−2m/s ≤ vy ≤ 2m/s,
−0.2rad/s ≤ γ ≤ 0.2rad ′s

⎫
⎬

⎭
, (48)

and

U =
⎧
⎨

⎩
u ∈ R

3

∣∣∣∣∣∣

−94000N ≤ Fxr ≤ 94000N ,

−0.174rad ≤ α f ≤ 0.174rad,

−98000N ≤ Fyr ≤ 98000N

⎫
⎬

⎭
.

(49)

The size of the look-up table is shown in Table 3.
The larger the grid step size δ (rad), the less memory
usage is required.
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Table 3 The size of the Look-up table

δ (rad) Size of the look-up table Memory usage (Bytes)

0.001 399 × 3 9576

0.002 199 × 3 4776

0.004 99 × 3 2376

The constraint set of the desired state is

P :=
⎧
⎨

⎩
xd ∈ R

3

∣∣∣∣∣∣

10m/s ≤ vdx ≤ 30m/s,
−2m/s ≤ vdy ≤ 2m/s,
−0.2rad/s ≤ γ d ≤ 0.2rad/s

⎫
⎬

⎭
.

(50)

�xd is constrained as

�P :=
⎧
⎨

⎩
�xd ∈ R

3

∣∣∣∣∣∣

−2.5m/s ≤ �vdx ≤ 2.5m/s,
−0.2m/s ≤ �vdy ≤ 0.2m/s,
−0.01rad/s ≤ �γ d ≤ 0.01rad/s

⎫
⎬

⎭
.

(51)

The constraint set of the state (20) is

Xe =
⎧
⎨

⎩
xe ∈ R

3

∣∣∣∣∣∣

−20m/s ≤ vxe ≤ 20m/s,
−4m/s ≤ vye ≤ 4m/s,
−0.4rad/s ≤ γe ≤ 0.4rad/s

⎫
⎬

⎭
.

(52)

The constraints of the error input are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue1max = Fxmax

m
+ �vdxmax

ts
+ γmaxv

d
ymax ,

ue1min = Fxmin

m
+ �vdxmin

ts
+ γminvdymax ,

ue2max = Fy f max + Fyrmax

m
+ �vdymax

ts
− γminvdxmax ,

ue2min = Fy f min + Fyrmin

m
+

�vdymin

ts
− γmaxv

d
xmax ,

ue3max = l f Fy f max − lr Fyrmin

Iz
+ �γ d

max
ts

,

ue3min = l f Fy f min − lr Fyrmax

Iz
+ �γ d

min
ts

.

(53)

Thus, in terms of (49) to (53), the constraint set
(22) is

Ue =
⎧
⎨

⎩
ue ∈ R

3

∣∣∣∣∣∣

−56 ≤ ue1 ≤ 59,
−18.46 ≤ ue2 ≤ 14.5,
−2.49 ≤ ue3 ≤ 2.49

⎫
⎬

⎭
. (54)

The validation of the truck model (3) during a J-
turn maneuver is then implemented. The front wheel

Fig. 6 Front wheel steering angle δ f of the J-turn maneuver

steering angle is shown in Fig. 6. The inputs of the
truck model (3) are gathered from TruckSim under the
J-turn maneuver. As shown in Fig. 7, the responses of
the truck model (3) and the test truck are consistent
during the J-turn maneuver, which demonstrates the
effectiveness of the model [20].

Remark 10 Unmodeled dynamics of trucks (23c)
arise due to the co-simulation implementation. As a
result, the potential impact of system uncertainty is ini-
tially addressed.

5.2 Assessment of the weighting matrix of NMPC

The weighting matrix Q = diag (q1, q2, q3) directly
affects the control performance. It canbe assessedusing
performance indicators expressed in the form of root
mean square error (RMSE)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vxp =
√

n∑

k=1

[
vdx (k) − vx (k)

]2
,

vyp =
√

n∑

k=1

[
vdy (k) − vy (k)

]2
,

γp =
√

n∑

k=1

[
γ d (k) − γ (k)

]2
,

(55)

where n is the length of the data. By (55), a smaller
RMSE indicates better tracking performance. The
assessment of the weighting matrix is conducted under
a lane-changing scenario [43]. The prediction horizon
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Fig. 7 J-turn maneuver: a longitudinal velocity, b lateral velocity, c yaw rate, d lateral force of the front tire

is N = 10 with a sampling time of ts = 0.05s. The
assessment results for the weighting matrix are shown
inFig. 8.A smaller area enclosed by the three indicators
indicates better control performance.

Thus, to achieve optimal control performance, the
weighting matrices are chosen as

Q = diag(1.5 × 103, 5 × 103, 1.5 × 106), (56)

and

R = diag(1 × 10−10, 1 × 10−2, 1 × 10−6). (57)

According to (52) and (54), the pairs
(
c j , d j

)
are

⎧
⎪⎪⎨

⎪⎪⎩

c1 = diag (1/20, 1/4, 1/0.4) , d1 = 0,
c2 = −diag (1/20, 1/4, 1/0.4) , d2 = 0,
c3 = 0, d3 = diag (1/59, 1/14.5, 1/2.49) ,

c4 = 0, d4 = −diag (1/56, 1/18.46, 1/2.49) .

(58)
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Fig. 8 Results of the weighting matrix assessment: a assessment on q1 (with q2 = 5 × 103 and q3 = 1.5 × 106), b assessment on q2
(with q1 = 1.5 × 103 and q3 = 1.5 × 106), c assessment on q3 (with q1 = 1.5 × 103 and q2 = 1.5 × 106)

Then, by solving Problem 2, the terminal penalty
function is

F
(
xp
) = xTp Pxp, (59)

where

P =
⎡

⎣
2.8292 × 107 ∗ ∗
3.0803 × 105 2.6477 × 108 ∗

−5.1186 × 105 3.3141 × 108 7.5004 × 108

⎤

⎦ .

(60)

5.3 Verification of the proposed NMPC

In this section, two cases are conducted to evaluate
the effectiveness of the proposed NMPC. The grid step
is set to δ = 0.001rad in both Case 1 and Case 2.
The condition for terminating the iteration of the NTLT
algorithm is

∥∥∥V(σ+1) − V(σ )
∥∥∥ ≤ � (61)

where � = 10−6.
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Fig. 9 State responses of
Case 1: a longitudinal
velocity, b lateral velocity, c
yaw rate

5.3.1 Case 1: Accelerated lane changing scenario

For comparison, an NMPC without guaranteed con-
vergence is also designed [18–23], where the termi-
nal constraint and terminal penalty function are omit-
ted. Furthermore, an NMPC with a large prediction
horizon is also introduced [31]. The desired longitu-
dinal velocity profile is predefined. The initial state

x (0) = [
10 0 0

]T
. The desired lateral velocity is

0m/s. The reference trajectory is defined as [44]

Yd (t) = 4

⎡

⎣10

(
vdx (t)

50

)3

− 15

(
vdx (t)

50

)4

+ 6

(
vdx (t)

50

)5
⎤

⎦ .

(62)

The simulation results of Case 1 are shown in Figs.
9 and 10. The dashed line represents the desired states.
The solid line represents the responses of the NMPC
with terminal ingredients. The dashed line represents
the responses of the NMPC without terminal ingredi-
ents. The dotted line represents the responses of the
NMPC with a large prediction horizon (N = 30). In

Fig. 9a, the proposed NMPC successfully tracks the
desired longitudinal velocity. In contrast, for theNMPC
without terminal ingredients, the longitudinal velocity
responses diverge from the desired value after 15 s. In
Fig. 9b, the lateral velocity of the proposed controller
converges to 0m/s. In contrast, the NMPC without ter-
minal ingredients cannot track the desired value. The
NMPC with a large prediction horizon can guarantee
that the vehicles track the desired states, while a larger
computational time is established compared with the
proposedNMPC. In Fig. 9c, all controllers successfully
track the desired yaw rate. Moreover, all of controllers
exhibit a low RMSE, as shown in Table 4. However,
as shown in Fig. 10a, for the NMPC without termi-
nal ingredients, the longitudinal force of the rear tire
exhibits a peak. Consequently, the truck experiences
weak handling stability due to large accelerations and
decelerations.

Remark 11 Note that the NMPC without terminal
ingredients may fail to ensure convergence of the vehi-
cle tracking trajectory error in certain cases, such as
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Fig. 10 Input responses of
Case 1: a longitudinal force
of the rear tire, b lateral
force of the rear tire, c front
wheel steering angle

Table 4 RMSE of the control performance of Case 1

NMPC vxp vyp γp

With terminal ingredients 0.0106 0.0027 0.0011

Without terminal ingredients 0.0624 0.0068 0.0011

With large prediction horizon 0.0499 0.0023 0.0010

case 1 presented in this paper. However, it is capable
of achieving the desired vehicle tracking performance
in most situations.

5.3.2 Case 2: Decelerated lane changing scenario

In this case, the proposed NMPC is evaluated in com-
parison to an NMPC without constraints, highlighting
the importance of considering constraints. The desired
longitudinal velocity profile is predefined as shown in
Fig. 11a. The desired lateral velocity is set to 0m/s. The

reference trajectory can be defined by (62). The initial

state x (0) = [
20 0 0

]T
.

The simulation results for Case 2 are presented in
Figs. 11 and 12, where the solid red lines denote the
values of the input constraints. The dashed red line rep-
resents the reference trajectory. The solid black line
represents the responses of the NMPCwith constraints.
The dashed line represents the responses of the NMPC
without constraints.

As shown in Table 5 and Fig. 11, compared with
the NMPC without constraints, the proposed scheme
exhibits a smaller RMSE and steady-state errors. Note
that the control inputs of theNMPCwithout constraints
do not satisfy the constraints in Fig. 12c. The simulation
results indicate that the proposed controller is effective
for trajectory tracking of ATs.
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Fig. 11 State responses of
Case 2: a longitudinal
velocity, b lateral velocity, c
yaw rate

5.4 Verification of the NTLT

5.4.1 Case 3: Results of different prediction horizons

Toverify the performance of the proposedmethod com-
pared to the NT method, the number of iterations is set
to 20, and δ = 0.001 rad. Simulations with different
prediction horizons (h = 15, h = 20, h = 30, h = 50)
are performed, grouped into four sets, labeled as 1, 2,
3, and 4.

In Fig. 13, the RMSE of the control performance of
bothmethods are similar. In Fig. 14a, the computational
time increases with the prediction horizon. The speed-
up of the proposed NTLT compared to the NT method
can be calculated as follows

ε (k) = tNT (k) − tNT LT (k)

tNT (k)
× 100%. (63)

where ε is the speed-up, tNT is the computational time
of theNTmethod, and tNT LT is the computational time
of the proposed NTLT. As shown in Fig. 14b, the pro-
posed NTLT achieves a speed-up from 20% to 35%.

5.4.2 Case 4: Results of different number of iterations

To verify the performance of the proposed method
compared to the NT method, the prediction horizon
is set to 10, and δ1 = 0.001 rad. Simulations with
different number of iterations {15, 20, 30, 50, 100} are
performed. Note that this case is conducted solely to
demonstrate the effectiveness of reducing computa-
tional time by introducing the look-up table instead
of tire functions. In vehicle engineering applications,
the conditions for terminating the iteration should be
adaptable.

As shown in Fig. 15, the RMSE of both methods are
similar, indicating that the proposed method is effec-
tive for trajectory tracking. Furthermore, the RMSE
decreases with an increasing number of iterations, indi-
cating that the proposed method converges towards the
optimal solution. In Fig. 16a, the computational time
increases with the number of iterations. In Fig. 16b,
the proposed NTLT can achieve a speed-up of 20% to
35%.
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Fig. 12 Input responses of
Case 2: a longitudinal force
of the rear tire, b lateral
force of the rear tire, c
sideslip angle of the front
tire

Table 5 RMSE of the control performance of Case 2

NMPC vxp vyp γp

With constraints 0.0148 0.0490 0.0025

Without constraints 0.1289 0.1120 0.0200

6 Conclusion

This paper proposed an NMPC scheme for the ref-
erence trajectory tracking of ATs. Initially, the truck
dynamics considering the coupled longitudinal, lateral,
and yaw motions and the Magic Formula tire model
were established. The problem of tracking the refer-
ence trajectory was transformed into a regulation prob-
lem. The optimization problem was then formulated
with terminal ingredients derived based on the PLDI
approach. Both the feasibility and the asymptotic con-

vergence of the proposed NMPC scheme were proven.
Furthermore, the NTLT was proposed for solving

the optimization problem, in which relevant tire values
were computed offline and searched online. Simulation
results showed that the proposed NMPC scheme can
effectively and asymptotically track the desired states.
The NTLT notably enhanced computational efficiency,
i.e., achieving a speed-up of 20% to 35% compared to
the NT method.

The validation of the NTLT is conducted through
simulations. It is important to note that lookup tables
introduce discontinuities, which affect the search direc-
tion and, consequently, the convergence of the NT
method. In this study, we focused solely on the feasibil-
ity of the NTLT for truck engineering. Future research
should rigorously prove the convergence of the NTLT.
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Fig. 13 Simulation results
of Case 3: a Longitudinal
velocity, b Lateral velocity,
c Yaw rate

Fig. 14 Computation time of Case 3: a Average computation time, b Speed-up
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Fig. 15 Simulation results
of Case 4: a Longitudinal
velocity, b Lateral velocity,
c Yaw rate

Fig. 16 Computation time of Case 4: a Average computation time, b Speed-up
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